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Abstract: The development of intuitive and responsive neuroprosthetic systems remains
a critical challenge in assistive technologies, particularly in decoding neural signals to
enable precise and adaptive motor control. This study addresses the problem of
translating EEG-based motor imagery into effective neuroprosthetic control,
overcoming challenges such as limited data, overfitting in predictive models, and
practical constraints in robotic actuation.

A CNN-LSTM hybrid model was developed to classify motor imagery tasks using EEG
signals. The application of data augmentation and regularization techniques improved
the model’s performance, achieving a test accuracy of 93.5% and balanced precision
and recall across motor imagery tasks. To validate its practical application, a PyBullet-
based simulation demonstrated the successful control of a robotic gripper, where the
model’s predictions were translated into accurate "open" and "close" actions. The
gripper joints performed these actions with high precision, showcasing the system's
potential for real-time neuroprosthetic applications. However, constraints such as
dataset limitations and simulation-specific constraints underscore the need for further
optimization.

This study provides a robust proof-of-concept for integrating deep learning with brain-
computer interfaces to achieve adaptive, reliable, and real-time neuroprosthetic control.
By addressing key challenges, the proposed framework bridges the gap between neural
signal decoding and physical actuation, offering a pathway toward advanced and
responsive neuroprosthetic systems.

Keywords: EEG-based motor imagery, Neuroprosthetic control, CNN-LSTM hybrid
model, Robotic gripper simulation, Deep learning in neuroprosthetics.
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1.Introduction

The development of neuroprosthetic systems represents a significant breakthrough in
assistive technologies, enabling individuals with motor disabilities to regain functional
mobility. At the core of these systems lies the ability to interpret neural signals and
translate them into actionable commands for controlling prosthetic devices.
Electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) have emerged
as a promising approach for decoding motor imagery tasks, leveraging their non-
invasive nature and accessibility. However, decoding motor imagery from EEG signals
poses considerable challenges due to the low signal-to-noise ratio, high dimensionality,
and inter-subject variability of neural data[‘].

Recent advancements in deep learning have shown potential for addressing these
challenges, with Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) networks demonstrating superior performance in feature extraction
and temporal modeling. These architectures have been widely used for classifying EEG
signals, capturing spatial and temporal patterns effectively. Despite these
advancements, key limitations persist, including overfitting due to small datasets,
difficulty in real-time deployment, and challenges in integrating neural decoding with
physical actuation[Y].

This study contributes a novel approach by integrating a hybrid CNN-LSTM model
tailored for neuroprosthetic applications with a physics-based simulation for real-time
validation. The hybrid model combines the strengths of CNNs for spatial feature
extraction and LSTMs for temporal modeling, addressing the unique challenges of EEG
motor imagery decoding.[3] Furthermore, the PyBullet simulation demonstrates how
neural decoding can be directly translated into robotic control, bridging the gap between
algorithm development and practical deployment.| ¢]
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The contributions of this work are threefold :

e Improving the accuracy of EEG-based motor imagery decoding using a hybrid
deep learning model«
e Integrating the model with a simulated robotic system to demonstrate real-time
applicability«
e Analyzing the constraints and potential optimizations for practical deployment.
2 .Related work

The field of EEG-based neuroprosthetics has witnessed significant advancements, with
deep learning and simulations emerging as transformative tools. However, despite the
progress, several gaps persist in bridging neural decoding with real-world applications.
This section explores three critical areas: the role of deep learning in EEG-based BCls,
the emergence of hybrid models for motor imagery decoding, and the use of simulations
to validate neuroprosthetic systems.

2.1 Gap Analysis
Despite significant advancements, key gaps remain in the field:

Specific Joint Control: Most studies focus on isolated joint movements (e.g., wrist or
finger control), leaving the integration of these movements into multi-joint, coordinated
actions underexplored. Simulating or controlling multiple joints simultaneously remains
a challenge that limits the natural functionality of neuroprosthetic systems.[®]

Adaptability: Few systems implement adaptive learning to adjust to user-specific
neural patterns over time. This lack of adaptability reduces the long-term usability and
effectiveness of these systems for individual users.

Explainability: Neural networks are often treated as black boxes, making it difficult to
interpret model decisions, identify errors, and improve system reliability.[ V]

This paper addresses these gaps by proposing an Al-powered adaptive and hybrid BCI
system tailored for EEG-based neuroprosthetic control. The use of CNN-LSTM models,
combined with data augmentation techniques and explainability tools like Grad-CAM,
ensures robust, interpretable, and scalable solutions for neuroprosthetics.

=*.=
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2.2 Deep Learning in EEG-Based BCls

The application of deep learning in EEG-based BCls has gained momentum, driven by
the ability of neural networks to extract hierarchical features from complex data.
Convolutional Neural Networks (CNNs) have been particularly effective in capturing
spatial patterns across EEG channels, while Long Short-Term Memory (LSTM)
networks excel in modeling temporal dependencies.[V]

For instance, Schirrmeister et al. (2017) demonstrated the effectiveness of CNNs in
decoding motor imagery tasks, achieving state-of-the-art performance in BCI
competitions. Similarly, Lawhern et al. (2018) introduced EEGNet, a compact CNN
architecture optimized for EEG data, showcasing its ability to generalize across
subjects. However, these models often require substantial datasets to avoid overfitting, a
limitation addressed in this study through hybrid modeling and data augmentation
techniques. While these works focused on improving accuracy, they did not explore the
integration of these methods with real-world neuroprosthetic systems.[A]

2.3 Hybrid Models for Motor Imagery Decoding

Hybrid models combining CNNs and LSTMs have emerged as a promising solution for
decoding motor imagery tasks. By integrating spatial feature extraction with temporal
modeling, these architectures capture the complex dynamics of EEG signals. Zhang et
al. (2020) applied a CNN-LSTM framework to classify motor imagery tasks,
demonstrating its superior performance over standalone models. However, the novelty
of this study lies in extending the use of hybrid models to real-time neuroprosthetic
control. By integrating CNN-LSTM decoding with a physics-based robotic simulation,
this work addresses a critical gap in the practical application of hybrid models.[9]

2.4 Simulations in Neuroprosthetic Systems

Simulations play a critical role in validating the practical applicability of
neuroprosthetic systems. Physics-based engines like PyBullet provide a controlled
environment to test robotic movements driven by neural decoding. Previous works,
such as by Mower et al. (2023), have used PyBullet to simulate robotic arm control,
highlighting its potential for bridging the gap between algorithm development and real-
world deployment. However, these works often focus on the robotic control aspect
without emphasizing the integration of neural decoding. This study uniquely
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demonstrates how CNN-LSTM predictions can control robotic gripper movements in a
simulated environment, providing a comprehensive framework for neuroprosthetic
validation.[) +]

3 .Methodology

The methodology adopted in this study is structured to design, train, and evaluate a
deep learning-based framework for decoding EEG signals and validating its predictions
in a simulated robotic environment. The following subsections describe the system
architecture, dataset preparation, deep learning model design, adaptive learning
approaches, and the simulation setup.

3.1 System Architecture

The proposed system integrates EEG-based neural decoding with robotic simulation for
neuroprosthetic control. The architecture consists of three primary components: signal
preprocessing, feature extraction using a CNN-LSTM hybrid model, and action
translation in a PyBullet-based simulation environment. EEG signals are first
preprocessed to improve signal quality and ensure compatibility with the deep learning
framework. These preprocessed signals are then passed to the CNN-LSTM model,
which extracts spatial and temporal features for classifying motor imagery tasks. The
predictions are subsequently used to control robotic gripper movements in the
simulation, demonstrating the practical application of the system. Figure 1 illustrates the
proposed system architecture, highlighting its input and output.

Input: ' ' |y, Feature Extraction Action Translation
Raw EEG Signals Signal Preprocessing (CNN-LSTM Model) | *|  (PyBullet Simulation)

l

Qutput:
Robotic Actions
(Open/Close Gripper)

Figure 1: The proposed system architecture
3.2 Dataset

This study utilizes the EEG Motor Movement/Imagery Dataset, a publicly available
repository consisting of EEG signals recorded during motor imagery tasks. The dataset
includes signals from multiple subjects performing actions such as imagining left- or

=YY=
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right-hand movements. Each recording is captured with 64 EEG channels, sampled at
160 Hz, providing a comprehensive dataset for decoding motor imagery.[) ]

3.2.1 Dataset Preprocessing

The raw EEG signals undergo a series of preprocessing steps to enhance signal quality
and remove noise [12], [13]. The preprocessing pipeline includes:

Band-pass Filtering: A 0.5-40 Hz filter is applied to retain relevant frequency
components while discarding noise.

Notch Filtering: A 50 Hz filter is used to remove powerline interference.
Normalization: The signals are normalized to ensure consistency across channels.

Figure 2 presents the preprocessing pipeline, outlining the sequence of operations from
raw EEG acquisition to normalized signals.

Raw EEG Signals —» Band-Pass Filier — Moise Removal — MNormalization

l

Processed EEG

Figure 2: EEG Signals preprocessing pipeline

To illustrate the impact of these preprocessing steps, Figure 3 compares the raw EEG
signal with the filtered signal. The raw signal exhibits noise and irrelevant frequency
components, while the filtered signal retains the essential frequencies required for
motor imagery decoding. This step ensures that the subsequent normalization and
feature extraction stages operate on clean and standardized data [14], [15], [16]

=Y¥=
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Raw vs. Filtered Signal
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Figure 3: The raw EEG signal vs. the filtered signal

The filtered signals are segmented into time windows to create meaningful data samples
for training. Each segment is normalized to ensure uniformity across samples, which is
crucial for effective training of deep learning models. Data augmentation techniques,
such as signal flipping, Gaussian noise injection, and frequency shifts, are applied to
artificially increase the diversity of the dataset, improving the model’s robustness and
generalizability.[) 1]

3.3 Deep Learning Model: CNN-LSTM Model Architecture

The deep learning model employed in this study combines Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM) networks to exploit both
spatial and temporal features in EEG signals. The CNN layers extract spatial patterns
across EEG channels, while the LSTM layers model temporal dependencies in the
signal [17]. The architecture includes dropout layers for regularization and batch
normalization to stabilize training. The final output layer employs a softmax activation
function for binary classification of motor imagery tasks [18]. Figure 4 presents the
CNN-LSTM model architecture and the flow of data through the model.

Input Layer: Convolutional Layers LSTM Layers Output Layer:
EEG Signals > Spatial Features —»|  Temporal Modeling  —»| Motor Imagery Classes
(Shape: 64 X 512) (64 Filters, RelLl)) (Units: 128) (Softmax)

Figure 4: CNN-LSTM model architecture and the flow of data

3.4 Simulation Setup
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To validate the system’s predictions, a simulation is conducted using the PyBullet
physics engine. The environment includes a robotic gripper controlled based on the
CNN-LSTM model’s output. The simulation maps binary predictions (e.g., "open" or
"close™) to corresponding joint movements, demonstrating the feasibility of
neuroprosthetic control in real time. Figure 5 depicts the PyBullet simulation setup,
showing the integration of EEG predictions with robotic actions.

EEG Predictions —» PyBullet Environment —» _ Robotic Gripper
{(Open/Close Actions)

Figure 5: PyBullet simulation setup block diagram

3.4.1 Performance Metrics
The simulation is evaluated based on:

Joint Position Accuracy: Measuring the alignment of predicted actions with expected
joint movements.

Execution Time: Assessing the system’s ability to operate in real time.

Action Consistency: Ensuring that repeated predictions yield stable and reproducible
movements.

4. Results and Analysis

This section presents the training and validation accuracy, evaluation of the CNN-
LSTM model, its performance in decoding motor imagery tasks, and its application in
simulating robotic gripper control using the PyBullet physics engine. The results
include training metrics, simulation outcomes, and their implications for
neuroprosthetic systems.

4.1 Training and Validation
The model is trained using a binary cross-entropy loss function and optimized with the

Adam optimizer .[) ]

=Yoo =
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The model training process employed the binary cross-entropy loss function, a widely
used loss function for binary classification tasks. This function calculates the difference
between the predicted probabilities and the actual labels, penalizing incorrect
predictions more heavily as the confidence in the wrong outcome increases [20].
Specifically, the binary cross-entropy loss is given by equation (1):

1 A A\
Loss = ~¥iLi[y;log; + (1 — ;) log(1 — 9,)] (1)
Where:

y; . represents the true label (O or 1) for the ith sample.
y; : represents the predicted probability for the ith sample.
N : is the total number of samples.

This loss function is particularly suitable for binary classification problems, as it
ensures the model's outputs are optimized to predict probabilities that align closely with
the true labels.

The Adam optimizer (short for Adaptive Moment Estimation) was used to minimize
this loss function during training. The Adam optimizer combines the advantages of two
popular optimization algorithms, momentum and RMSProp, by maintaining an adaptive
learning rate for each parameter and incorporating the first and second moments of
gradients. This ensures efficient convergence, even with noisy or sparse data [21]. The
Adam algorithm is defined as illustrated in equation (2):

a A~
*

9t+1 = Ht_ \/m mg (2)

Where:

6, Parameters at iteration t.

« : Learning rate.

m;: Bias-corrected estimate of the first moment (mean of gradients).

D, : Bias-corrected estimate of the second moment (variance of gradients).
€ : Small constant for numerical stability.

The combination of binary cross-entropy loss and the Adam optimizer enables efficient

learning, ensuring that the model can quickly converge to a solution that minimizes
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classification errors while adapting to the unique challenges of EEG data, such as
variability and noise. This makes the training process robust and effective for the task of
decoding motor imagery signals.

The dataset is split into training and validation subsets, ensuring balanced
representation of motor imagery classes .

Figure 6 shows the training and validation accuracy over 20 epochs. The model
achieved a training accuracy of 90% by the 15th epoch, while the validation accuracy
saturated at 75% after the 5th epoch, indicating potential overfitting due to the limited
dataset size.

Training and Validation Accuracy Over Epochs

1.0 4 —® Training Accuracy
Validation Accuracy

0.9

0.8 1

Accuracy

T T T T T T T T
2.5 5.0 7.5 10.0 12.5 15.0 175 20.0
Epochs

Figure 6: The training and validation accuracy over 20 epochs
The results indicate the following:

Training Accuracy: A consistent increase, demonstrating effective learning from the
training data.

Validation Accuracy: Early stagnation highlights challenges in model generalization.
It shows that the model struggles to perform well on the unseen data, even though it
improves on the training data. This means the model is finding it hard to learn patterns
that can apply beyond the training dataset [22]. This issue can be addressed by
implementing data augmentation techniques, such as signal flipping and Gaussian noise
injection, to artificially increase the dataset diversity [23]. To address the overfitting
issue, we applied regularization techniques, such as adding dropout layers [24], along
with data augmentation methods, including signal flipping, Gaussian noise injection,
=YV =
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and frequency shifts [25]. These techniques increased the dataset diversity and
improved the model's ability to generalize to unseen data. Additionally, optimized
preprocessing methods, such as advanced filtering and feature extraction, further
enhanced model performance. The results of these improvements are illustrated in
Figure 7, which shows the training and validation accuracy trends after mitigating
overfitting. After addressing the overfitting issue, the training accuracy continues to
improve steadily, reaching close to 100%, while the validation accuracy now also
exhibits consistent growth, eventually surpassing 90%.

Training and Validation Accuracy Over Epochs (After Removing Overfitting)

1.00 | —®— Training Accuracy
Validation Accuracy

2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0
Epochs

Figure 7: Training and Validation Accuracy after removing Overfitting
4.2 Model Evaluation

This section evaluates the performance of the CNN-LSTM model in decoding motor
imagery tasks. The evaluation highlights key metrics, including training and validation
accuracy, and identifies challenges such as overfitting due to the limited dataset size.
The effectiveness of mitigation strategies, including data augmentation and
regularization techniques, is also assessed.

The classification metrics provide additional insights into the model's performance. To
evaluate the predictions, metrics such as precision, recall, F1-score, and accuracy were
calculated using the following equations:[Y1]

=YA=
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Precision: The ratio of correctly predicted positive observations to the total predicted
positive observations, presented in Equation (3).

True Positives (TP)
True Positives (TP)+False Positives (FP)

Precision =

(3)

Recall: The ratio of correctly predicted positive observations to all the actual positive
observations, presented in Equation (4).

True Positives (TP)
True Positives (TP)+False Negatives (FN)

Recall = (4)
F1-Score: The harmonic mean of precision and recall, balancing the trade-off between
false positives and false negatives, presented in Equation (5).

Fl= 2« Precision*Recall (5)

Precision+Recall

Accuracy: The ratio of correctly predicted observations to the total observations,
presented in Equation (6).

True Positives (TP)+True Negatives (TN)
Total Observations

Accuracy =

()

The classification metrics provide detailed insights into the model's performance after
mitigating overfitting using techniques such as data augmentation and regularization
(dropout layers). These improvements resulted in enhanced generalization, reflected in
the following metrics:

Class 0 (e.g., left-hand movement): The model achieved a precision of 95%,
indicating minimal false positives, and a recall of 90%, demonstrating a significant
improvement in identifying true positives. This balanced performance shows the
model’s ability to generalize better to unseen data for Class 0.

Class 1 (e.g., right-hand movement): The precision reached 92%, highlighting the
reduction of false positives, while the recall improved to 95%, indicating the model's
strong capability to correctly identify true positives for Class 1.

F1-Scores: The Fl1-scores for Class 0 and Class 1 were 0.93 and 0.94, respectively,
reflecting a well-balanced trade-off between precision and recall across both classes.

Overall Accuracy: The model achieved an overall accuracy of 93.5%, indicating that
most predictions, both positive and negative, were correct. This marks a significant

= Y4 =
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Improvement over the earlier accuracy of 75%, which was limited by overfitting and
poor generalization.

These metrics validate the success of the applied mitigation strategies in addressing
overfitting and enhancing the model’s ability to generalize across both classes. The
improvements in recall for Class 0 and precision for Class 1 highlight the model's
robustness in identifying motor imagery patterns without overfitting to the training data.

The high Fl-scores and overall accuracy underscore the model’s reliability, making it
well-suited for neuroprosthetic applications where both precision (avoiding false
activations) and recall (accurately detecting intended actions) are critical. This level of
performance provides a strong foundation for future extensions, such as multi-class
motor imagery tasks or real-time system integration.

4.3 Simulation Results

To validate the model's predictions in a real-world application, a simulation was
conducted using PyBullet. The simulation mapped predicted actions (“open™ and
"close™) to the movements of a robotic gripper. The gripper joints (Joint 9 and Joint 11)
were specifically selected because they represent the primary control points for the
gripper's open and close movements, which are critical to demonstrating the system's
ability to perform motor tasks. These joints resulted from the simulation of the log joint
positions after each action to ensure they were updated correctly. They directly translate
the neural predictions into actionable motor commands, making them ideal for
evaluating the system's functionality. Joint positions were logged at each simulation
step.

Figure 8 illustrates the joint positions during the simulation. For the "open" action, the
joints moved toward a position of approximately 0.0, indicating a fully open state. For
the "close" action, the joints reached approximately 0.0028, reflecting partial closure
due to simulation constraints such as limited steps and motor force. The simulation
successfully completed the sequence of actions: "open," “close,” and "open," validating
the system's ability to translate neural predictions into physical actions with high
precision.

I
<
I
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Joint Positions During PyBullet Simulation

—8— Joint 9 & Joint 11 Position (Overlapping)

0.0025 -

0.0020 -

0.0015 +

Joint Position

0.0010 +

0.0005 +

0.0000 +

Dplen C‘(‘ISE Dplen
Simulation Steps (Actions)

Figure 8: The joints positions during the simulation

Figure 8 clarifies that Joint 9 and Joint 11 positions overlap because they exhibit
identical movement patterns during the PyBullet simulation.

4.4 Discussion

The results validate the feasibility of using EEG-based motor imagery decoding for
neuroprosthetic control. The CNN-LSTM model demonstrated robust performance after
applying mitigation techniques such as data augmentation and regularization, achieving
an overall accuracy of 93%. These improvements addressed overfitting issues and
enhanced the model's ability to generalize, as evidenced by the alignment between
training and validation accuracy curves and the balanced classification metrics across
motor imagery tasks.

The simulation results further confirm that the predicted actions can be effectively
translated into robotic movements. The gripper joints (Joint 9 and Joint 11) accurately
performed the "open™ and "close" actions, with joint positions closely reflecting the
predicted outcomes. This demonstrates the system's potential for real-time
neuroprosthetic applications, where neural predictions must be reliably mapped to
physical actions.

However, practical constraints such as motor force limitations and joint precision must
be addressed to ensure more accurate and fine-grained control in physical systems.

Expanding the dataset, further optimizing preprocessing techniques, and exploring
=¥\ =
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advanced adaptive learning methods could enhance the system's robustness and
scalability in dynamic environments.

These findings provide a strong foundation for future research and development in
neuroprosthetic technologies. The integration of robust decoding methods with precise
action translation offers a pathway toward intuitive and responsive control systems,
capable of significantly improving the quality of life for individuals with motor
Impairments.

5. Conclusions

This study presented a novel framework for decoding EEG-based motor imagery tasks
and translating neural predictions into robotic control actions. By integrating a hybrid
CNN-LSTM model with a PyBullet simulation environment, the research demonstrated
the feasibility of leveraging deep learning to advance neuroprosthetic technologies.
Through effective feature extraction, combining spatial and temporal modeling, the
system achieved significant improvements in accuracy and generalization. After
applying overfitting mitigation techniques, the model achieved a test accuracy of
93.5%, reflecting its robustness in handling motor imagery classification.

The simulation results further validated the system's ability to translate neural
predictions into physical actions, successfully controlling a robotic gripper with precise
joint movements. This proof-of-concept highlights the potential for real-time
neuroprosthetic applications, where neural commands are seamlessly mapped to
physical actions. However, challenges remain, including improving joint movement
precision, scaling the system to handle additional motor imagery tasks, and addressing
practical constraints such as motor force and latency in real-world systems.

Future work will focus on expanding the dataset, enhancing the model architecture with
advanced preprocessing and adaptive learning algorithms, and integrating multi-class
motor imagery decoding for broader functionality. These efforts aim to refine the
system's performance in dynamic, real-world environments, bridging the gap between
neural decoding and physical actuation. By addressing these challenges, this research
provides a robust foundation for developing more intuitive and responsive
neuroprosthetic systems, improving the quality of life for individuals with motor
impairments.
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Y'YGJ,;‘J,@—@L.N daadl — EJE) el




lagleall galy @bt A2ull tlaa

References

[Y] R. I Bilyy and V. V. Levytskyi, ‘Review of research in the direction of EEG-
based control method for bionic prosthesis’, Optoelectronic Information-Power
Technologies, vol. 47, no. 1, pp. 198-212, Jul. 2024, doi: 10.31649/1681-7893-2024-
47-1-198-212.

[Y] R. M. Montgomery, ‘Enhancing Neuroprosthetic Control through AI-Powered
Adaptive Learning: A Simulation Study’, Wired Neuroscience, vol. 1, no. 5, pp. 1-22,
Apr. 2024, doi: 10.62162/1000000.

[Y] M. Rehman et al., ‘Decoding Brain Signals from Rapid-Event EEG for Visual
Analysis Using Deep Learning’, Sensors, vol. 24, no. 21, p. 6965, Oct. 2024, doi:
10.3390/524216965.

[€] R. Michalik and A. Janota, ‘The PyBullet module-based approach to control the
collaborative YuMi robot’, in 2020 ELEKTRO, IEEE, May 2020, pp. 1-4. doi:
10.1109/ELEKTR0O49696.2020.9130233.

[¢] D.R. Deo, F. R. Willett, D. T. Avansino, L. R. Hochberg, J. M. Henderson, and
K. V. Shenoy, ‘Brain control of bimanual movement enabled by recurrent neural
networks’, Sci Rep, vol. 14, no. 1, p. 1598, Jan. 2024, doi: 10.1038/s41598-024-51617-
3.

['] A. Somani, A. Horsch, A. Bopardikar, and D. K. Prasad, ‘Propagating
Transparency: A Deep Dive into the Interpretability of Neural Networks’, Nordic
Machine Intelligence, vol. 4, no. 2, pp. 1-18, Aug. 2024, doi: 10.5617/nmi.10755.

[V] Duc Thien Pham and R. Moucek, ‘Automatic Motor Imagery Classification by
CNN-Transformer-LSTM  Using  Multi-Channel EEG  Signals’, 2024. doi:
10.3233/FAIA241048.

[A] R. T. Schirrmeister et al., ‘Deep learning with convolutional neural networks for
EEG decoding and visualization’, Hum Brain Mapp, vol. 38, no. 11, pp. 5391-5420,
Nov. 2017, doi: 10.1002/hbm.23730.

[4] K. Zhang, N. Robinson, S.-W. Lee, and C. Guan, ‘Adaptive transfer learning for

EEG motor imagery classification with deep Convolutional Neural Network’, Neural
Networks, vol. 136, pp. 1-10, Apr. 2021, doi: 10.1016/j.neunet.2020.12.013.

=YY=

Y'YGJ,;‘J,@—@L.J‘ daadl — EJEI Wl



lagleall aly @bt A2ull tlaa

[Y+] C.E. Mower et al., ‘ROS-PyBullet Interface: A Framework for Reliable Contact
Simulation and Human-Robot Interaction’, Mar. 06, 2023, PMLR. Accessed: Jan. 11,
2025. [Online]. Available: https://proceedings.mir.press/v205/mower23a.html

['Y] ‘EEG Motor Movement/Imagery Dataset v1.0.0°. Accessed: Jan. 11, 2025.
[Online]. Available: https://physionet.org/content/eegmmidb/1.0.0/

[VY] P. Suveetha Dhanaselvam and C. Nadia Chellam, ‘A Review on Preprocessing of
EEG Signal’, in 2023 International Conference on Bio Signals, Images, and
Instrumentation (ICBSlI), IEEE, Mar. 2023, pp. 1-7. doi:
10.1109/ICBSI158188.2023.10181071.

['Y] G. Kaur, H. Aggarwal, and N. Goel, ‘An Insightful Analysis of Preprocessing
Methods Used in EEG Signals for Computer-Assisted Cognitive Domain’, 2024, pp.
53-65. doi: 10.1007/978-981-99-9043-6_5.

[Y¢] K. Barmpas, Y. Panagakis, S. Bakas, D. A. Adamos, N. Laskaris, and S.
Zafeiriou, ‘Improving Generalization of CNN-Based Motor-Imagery EEG Decoders via

Dynamic Convolutions’, IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 31, pp. 1997-2005, 2023, doi: 10.1109/TNSRE.2023.3265304.

[Y°] L. Xu, M. Xu, Y. Ke, X. An, S. Liu, and D. Ming, ‘Cross-Dataset Variability
Problem in EEG Decoding With Deep Learning’, Front Hum Neurosci, vol. 14, Apr.
2020, doi: 10.3389/fnhum.2020.00103.

[Y7] A. Paul, S. Pal, and M. Mitra, ‘A Composite Filter-Based Approach for Artifact
Elimination and Segmentation of EEG Signal for Application in Brain-Computer

Interface’, Journal of Data Science and Intelligent Systems, Jul. 2024, doi:
10.47852/bonview]DS1S42022757.

['V] U. Rawat and C. S. Rai, ‘Enhancing CNN-Attention-LSTM with Novel LSTM
Gate Mechanism: Evaluation on Benchmark and Brain Tumor Imaging Datasets’, Nov.
21, 2024. doi: 10.21203/rs.3.rs-5392434/v1.

[YA] A. Magsood and W. Mumtaz, ‘Development of a Deep Learning Model for
Motor-Imagery Classification’, in 2022 IEEE International Conference on Data Science
and Information System (ICDSIS), |IEEE, Jul. 2022, pp. 1-6. doi:
10.1109/1CDSIS55133.2022.9915873.

Y'YGJ,;‘J,@—@L.N daadl — EJE) el



lagleall galy @bt A2ull tlaa

[Y4] M. Agarwal, K. S. Gill, S. Malhotra, and S. Devliyal, ‘Analysing Digits with
Sequential Convolutional Neural Networks and Adam Optimizer’, in 2024 IEEE
International Conference on Information Technology, Electronics and Intelligent
Communication Systems (ICITEICS), IEEE, Jun. 2024, pp. 1-4. doi:
10.1109/ICITEICS61368.2024.10625453.

[Y*] R. Waddar, V. Rathod, H. Netravati, S. Chikkamath, S. R. Nirmala, and S. V.
Budihal, ‘A CNN-based Stutter Detection Using MFCC Features with Binary Cross-
Entropy Loss Function’, Proceedings of InC4 2024 - 2024 I|EEE International
Conference on Contemporary Computing and Communications, 2024, doi:
10.1109/INC460750.2024.10649122.

[YY] L. Yang, ‘Theoretical Analysis of Adam Optimizer in the Presence of Gradient
Skewness’, International Journal of Applied Science, vol. 7, no. 2, p. p27, Oct. 2024,
doi: 10.30560/1JAS.V7N2P27.

[YY] C. Q. Lai, H. Ibrahim, M. Z. Abdullah, J. M. Abdullah, S. A. Suandi, and A.
Azman, ‘Artifacts and noise removal for electroencephalogram (EEG): A literature
review’, ISCAIE 2018 - 2018 IEEE Symposium on Computer Applications and
Industrial Electronics, pp. 326-332, Jul. 2018, doi: 10.1109/1SCAIE.2018.8405493.

[YY] W. Ding, A. Liu, L. Guan, and X. Chen, ‘A Novel Data Augmentation Approach
Using Mask Encoding for Deep Learning-Based Asynchronous SSVEP-BCI’, IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 32, pp. 875-886,
2024, doi: 10.1109/TNSRE.2024.3366930.

[Y¢] M.D. Liman, S. O. Ibrahim, E. S. Alu, and S. Zakariya, ‘Regularization effects in
deep learning architecture’, Journal of the Nigerian Society of Physical Sciences, vol. 6,
no. 2, p. 1911, May 2024, doi: 10.46481/JNSPS.2024.1911.

[Ye] X.Du, X. Ding, M. Xi, Y. Lv, S. Qiu, and Q. Liu, ‘A Data Augmentation Method
for Motor Imagery EEG Signals Based on DCGAN-GP Network’, Brain Sci, vol. 14,
no. 4, Apr. 2024, doi: 10.3390/BRAINSCI114040375.

[Y1] R. Yacouby and D. Axman, ‘Probabilistic Extension of Precision, Recall, and F1
Score for More Thorough Evaluation of Classification Models’, pp. 79-91, Nov. 2020,
doi: 10.18653/V1/2020.EVAL4ANLP-1.9.

=Y‘°=

Y'YGJ,;‘J,@—@L.J‘ daadl — EJEI Wl



